Замечательные числа [Ноль, 666 и другие бестии] (Мир математики. т.21.)

Ламберто Гарсия
100
10
(1 голос)
0 0

Аннотация: Многие числа обрели особое арифметическое или мистическое значение еще в древности. В наши дни эти представления трансформировались в нечто другое, и те же числа «обросли» новыми мифами. Более того, были изобретены новые числа, одни из которых получили имя, а другие — и фамилию. Сегодня мы можем говорить о натуральных, целых, вещественных, рациональных, иррациональных, мнимых, трансцендентных, трансфинитных и многих других числах. Из этой книги вы узнаете, что означали числа в древности и какие замечательные свойства они приобрели в современном мире.

0
329
31
Замечательные числа [Ноль, 666 и другие бестии] (Мир математики. т.21.)

Читать книгу "Замечательные числа [Ноль, 666 и другие бестии] (Мир математики. т.21.)"




Числа Фридмана

Числа Фридмана — это разновидность самовлюбленных чисел (напомним, что самовлюбленное число — это число, равное сумме своих цифр, каждая из которых возведена в степень, равную количеству разрядов исходного числа), которые в рассматриваемой системе счисления могут быть составлены из цифр исходного числа с помощью знаков +, —, х, / и ^ (оператор возведения в степень). Приоритет операций разрешается изменять с помощью скобок. Также допускается запись цифр не по порядку и объединение двух цифр.

Первыми числами Фридмана являются: 25, 121, 125, 126, 127, 128, 153, 216, 289, 343, 347, 625, 688, 736, 1022, 1024, 1206, 1255, 1260, 1285, 1296.

Рассмотрим подробнее первые числа этого ряда:

25 = 52

121 = 112

125 = 5(1+2)

126 = 21∙6…

ЧИСЛА ЭРДЁША

Пол Эрдёш был венгерским математиком, эмигрировавшим в США. У этого весьма незаурядного человека не было дома, и он постоянно ездил по стране, выступая с лекциями и посещая математические конференции. Эрдёш опубликовал столько статей с другими математиками, что в итоге было определено так называемое число Эрдёша, позволяющее классифицировать всех математиков. Вычисляется оно следующим образом: число Эрдёша равно 1 у непосредственных его соавторов; число Эрдёша равно 2 утех, кто опубликовал статью в соавторстве с кем-либо, у кого число Эрдёша равно 1, то есть с его непосредственным соавтором, и т. д. Для самого Эрдёша из очевидных соображений было зарезервировано число 0.

* * *

Число Фридмана называется приятным, если для его получения не требуется изменять порядок цифр. Первыми числами, которые обладают этим дополнительным свойством, являются: 127, 343, 736, 1285, 2187, 2502, 2592, 2737, 3125, 3685, 3864, 3972, 4096, 6455, 11264, 11664, 12850, 13825, 14641, 15552, 15585, 15612, 15613… Если число Фридмана образовано всеми числами от 1 до 9, оно называется панцифровым. Такими числами Фридмана являются:

123456789 = ((86 + 2∙7)5 — 91)/34 и

987654321 = (8∙(97 + 6/2)5 + 1)/34.

Если разрешить использование факториалов и корней, числами Фридмана также будут следующие, весьма любопытные числа:

Число Чамперноуна

Число Чамперноуна (также известное как константа С10, что подразумевает запись этого числа в десятичной системе счисления) — это число 0,123456789101112…, открытое Дэвидом Чамперноуном (1912–2000). Оно состоит из всех натуральных чисел, записанных по порядку. В записи этого числа с одинаковой вероятностью встречаются все возможные последовательности чисел любой длины. Эта константа является трансцендентным числом (его десятичная запись бесконечно велика), что доказал Курт Малер.

Приведенное выше число записано в десятичной системе счисления, однако константы Чамперноуна можно записать и в любой другой системе счисления, например в двоичной:

C2 = 0,110 11100 101110 111.

Эту константу для данной системы счисления можно представить как сумму бес конечного ряда:

Числа Пелла

Числа Пелла, названные в честь Джона Пелла (1611–1685), были известны и до него, однако именно этот британский математик дал им название. Эти числа образуют любопытный ряд — они являются знаменателями дробей, которые представляют собой последовательные приближения квадратного корня из 2. Первые члены последовательности этих дробей таковы: 1/1, 3/2, 7/5, 17/12, 41/29…, поэтому первыми числами Пелла будут 1, 2, 5, 12 и 29.

Числители этих дробей соответственно в два раза меньше так называемых чисел Пелла-Люка (по имени Эдуарда Люка) — 2, 6, 14, 34, 82…

Члены обеих последовательностей можно вычислить по рекуррентной формуле, схожей с той, по которой рассчитываются числа Фибоначчи. Обе эти последовательности возрастают экспоненциально, а соотношение их членов подчиняется серебряному соотношению, равному 1 + √2. Помимо вычисления приближенных значений квадратного корня из 2, числа Пелла можно использовать для нахождения треугольных чисел и решения некоторых задач комбинаторики.

Числа Маркова

Числом Маркова называется положительное число х, у или z, которое является частью решения диофантова уравнения Маркова:

х2 + у2 + z2 = 3xyz.

Первыми числами Маркова являются: 1, 2, 5, 13, 29, 34, 89, 169, 194. Эти числа описывают координаты так называемых троек Маркова:

(1; 1; 1), (1; 1; 2), (1; 2; 5), (1; 5; 13), (2; 5; 29), (1; 13; 34), (1; 34; 89), (2; 29; 169), (5; 13; 194), (1; 89; 233), (5; 29; 433), (89; 233; 610) и т. д.

Русский математик Андрей Марков (1856–1922), который совершил несколько блестящих открытий в теории чисел и теории вероятностей.

Их можно представить следующим элегантным образом — в виде дерева, каждой ветви которого соответствует тройка Маркова.

Существует бесконечное множество чисел и троек Маркова.

Числа Пуле

Число Пуле — это число n, для которого выполняется тождество:

Числами Пуле являются все нечетные простые числа, числа Ферма, числа Мерсенна и числа Кармайкла.

Первые числа Пуле — 341, 561, 645, 1105, 1387… (второе и четвертое число этой последовательности также являются числами Кармайкла).

ГИПЕРПРОСТЫЕ ЧИСЛА КЕНО

Французский писатель Раймон Кено назвал одну из разновидностей простых чисел гиперпростыми. Число называется гиперпростым справа, если мы отбросим одну или несколько его цифр начиная справа (или слева — в этом случае число будет гиперпростым слева соответственно) и оставшееся число при этом также будет простым. Кено указывал, что наибольшее число, которое является гиперпростым справа, — это 1979339339. Наибольшее число, гиперпростое слева, — 12953. Неизвестно, содержат ли числа, гиперпростые слева, конечное число знаков. Также существуют числа, которые являются гиперпростыми слева и справа одновременно, как, например, 3137.

Суперчисла Пуле

Суперчисло Пуле — это число Пуле, каждый делитель d которого также является делителем следующего числа:

2d - 2.

Например, суперчислом Пуле является 341, поскольку его делители (1, 11, 31, 341) удовлетворяют указанному выше условию, а именно:

(211 — 2)/11 = 2046/11 = 186,

(231 — 2)/31 = 2147483646/31 = 69273666,

(2341 — 2)/341 = 13136332798696798888899954724741608669335164206654835981818117894215788100763407304286671514789484550.

Суперчислами Пуле, меньшими 10000, являются: 341 (11∙31), 1387 (19∙73), 2047 (23∙89), 2701 (37∙73), 3277 (29∙113), 4033 (37∙109), 4369 (17∙257), 4681 (31∙151), 5461 (43∙127), 7957 (73∙109) и 8321 (53∙157). В скобках указаны множители этих чисел.

Числа Кармайкла

Числом Кармайкла называется составное число n, удовлетворяющее условию:

для любого целого а, взаимно простого с n.

Числа Кармайкла получили свое название в честь математика Роберта Кармайкла, который первым занялся их изучением. Эти числа являются псевдопростыми в любой системе счисления. Первыми числами Кармайкла являются: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585… Рассмотрим первое из них:

n = 561 = 3∙11∙17,

следовательно, оно не является простым. Однако а560 — 1 делится на 561 для любого а, которое является взаимно простым с 561.

Числа Лейланда

Числа Лейланда получили свое название в честь первооткрывателя — английского математика Пола Лейланда. В теории чисел к ним относятся числа вида хy + уx где х и у больше 1. Первыми числами Лейланда являются: 8, 17, 32, 54, 57,100, 145,177, 320, 368, 512. Рассмотрим, как вычисляются первые два числа Лейланда:

для х и у = 2 => 22 + 22 = 4 + 4 = 8

для х и у = 2 и 3 => 23 + З2 = 8 + 9 = 17

и т. д. Важно, чтобы х и у были больше 1, в противном случае все числа Лейланда будут иметь вид х1 + 1х.

Первыми простыми числами Лейланда являются 17, 593, 32993, 2097 593, которые выражаются в следующем виде: 32 + 23, 92 + 29, 152 + 215, 212 + 221. Наибольшее простое число, которое одновременно является числом Лейланда, — это 26384405 + 44052638, запись которого содержит 15071 цифру.

Числа Каллена

Это числа вида n∙2n + 1, открытые ирландским математиком Джеймсом Калленом. Они являются простыми при следующих n: 1, 141, 4713, 5795, 6611 и 18496. Для всех остальных n < 30000 числа Каллена являются составными.

Наименьшее простое число Каллена — 141∙2141 + 1. Следующие числа находятся по формуле n∙2n + 1 для соответствующих значений n. Существует гипотеза, согласно которой простых чисел Каллена бесконечно много, однако она пока не доказана.

Числа Вудала

Число Вудала — это натуральное число вида (n∙2n — 1). Впервые описал эти числа английский математик Герберт Вудал. Первыми числами Вудала являются: 1, 7, 23, 63, 159, 383, 895…

Числа Белла

Числа Белла, названные в честь шотландского математика Эрика Темпла Белла, являются членами последовательности 1, 2, 5, 15, 52, 203, 877, 4140, 21147,115975, 678570, 4213597…

Они обозначают число способов, которыми можно разложить m пронумерованных шаров в n одинаковых коробок. Например, числа, обозначенные буквами а, b и с, можно разложить в три коробки пятью способами: (abc), (а) (Ьс), (Ь) (ас), (с) (аЬ) и (а) (Ь) (с).

Числа Белла также обозначают число способов, которыми можно разложить на множители составное число, имеющее n различных простых множителей. Так, число 30 раскладывается на простые множители следующим образом: 30 = 2∙3∙5. Это число можно разложить на множители пятью разными способами: 30 = 6∙5 = 3∙10 = 30∙1 = 15∙2 = 2∙3∙5.

Константа Коупленда-Эрдёша

Это число является результатом совместной работы двух математиков: Артура Герберта Коупленда и Пола Эрдёша. Оно записывается так:

0,235711131719232931…

В записи этого числа после запятой последовательно перечислены все простые числа в порядке возрастания.

Эта константа является иррациональной, то есть ее нельзя представить в виде дроби m/n, где m и n — целые. Из теоремы Дирихле о простых числах в арифметических прогрессиях с помощью этого числа выводится следующее утверждение: для каждого m существуют простые числа вида:

k∙10m+1 + 1.

Это означает, что существуют простые числа, десятичная запись которых содержит по меньшей мере т последовательных нулей, за которыми следует 1. Отсюда следует, что константа Коупленда-Эрдёша содержит сколь угодно большие последовательности нулей, за которыми следует 1, а стало быть, она является бесконечной непериодической десятичной дробью. Константа Коупленда-Эрдёша определяется формулой:

где р(n) — n-е простое число.

Простое число Чена

Простое число р является числом Чена, если р + 2 является простым или его можно представить в виде произведения двух простых. Четное число 2р + 2 удовлетворяет теореме Чена. Математик Чен Цзинжунь, в честь которого названы эти числа, в 1966 году доказал, что существует бесконечное множество таких чисел.

Первыми простыми числами Чена являются: 2, 3, 5, 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83. Первые простые числа, которые не являются числами Чена, таковы: 43, 61, 73, 79, 97,103,151,163.

Любопытно, что существует магический квадрат — составил его Рудольф Ондрейка, — все числа которого являются простыми числами Чена.

Это квадрат размером 3x3, «магическая константа» которого равна 177. Наибольшее простое число Чена, известное на сегодняшний день, равно 65516468355∙2333333 — 1 и содержит 100355 цифр.

Числа Смита

Это целые числа, для которых сумма их цифр равна сумме цифр их простых множителей, записанных без использования степеней. Например, 666 является числом Смита (обратите внимание, что все цифры нужно складывать по отдельности — так, для множителя 37 нужно сложить 3 и 7):

Скачать книгу "Замечательные числа [Ноль, 666 и другие бестии] (Мир математики. т.21.)" бесплатно

100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Комментариев еще нет. Вы можете стать первым!
КнигоДром » Математика » Замечательные числа [Ноль, 666 и другие бестии] (Мир математики. т.21.)
Внимание