Вероятности и неприятности. Математика повседневной жизни

Сергей Самойленко
100
10
(1 голос)
0 0

Аннотация: Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости»,— несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе ит.п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?»,— и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.

0
541
72
Вероятности и неприятности. Математика повседневной жизни

Читать книгу "Вероятности и неприятности. Математика повседневной жизни"




Современная теория вероятностей базируется на понятии вероятностного пространства. Его определение потребует ввести несколько новых терминов.

Элементарное событие — результат какого-либо эксперимента или наблюдения за системой, имеющей случайное поведение. При этом один эксперимент порождает ровно одно событие. Например: «выпадение тройки при бросании игральной кости», «наблюдение интервала в 7 минут между автомобилями в дорожном потоке».

Множество всех таких событий называют пространством элементарных событий. Ну что же, мы теперь готовы познакомиться с тем, как в математике определяется вероятность.

Вероятностным пространством называется тройка, включающая пространство элементарных событий Ω, сигма-алгебру его подмножеств F и функцию P, называемую вероятностью, которая каждому элементу из F ставит в соответствие неотрицательное число, причем:

1) P(∅) = 0;

2) P(Ω) = 1;

3) функция P сигма-аддитивна, то есть вероятность счетного объединения непересекающихся событий равна сумме их вероятностей: P(∪iAi) = ΣiP(Ai).

Как видите, вероятность — сигма-аддитивная мера на пространстве элементарных событий, имеющем меру 1. Соответственно, описанные выше свойства меры на языке вероятностей примут следующий вид.

Если из события A следует событие B, то вероятность A не больше, чем вероятность B: если AB, то P(A) ≤ P(B).

Если из события A следует событие B, то вероятность того, что наступит B, но не наступит A, равна разности вероятностей: если AB, то P(BA) = P(B) — P(A). В частности, если B = Ω, то получаем формулу для вероятности противоположного события. Если событие, означающее, что событие A не произошло, обозначить  то

Для любых A и B верно P(AB) = P(A) + P(B) − P(AB).

Рассмотрим простейший пример вероятностного пространства. Пусть мы бросаем монету, то есть в нашем эксперименте возможны всего два исхода, и Ω = {О (орел), Р (решка)}. Сигма-алгебра — множество всех подмножеств Ω, и в ней всего четыре элемента: {∅, {О},{Р},{О, Р}}. Она включает невозможное событие — отсутствие какого-либо результата (∅), а также тривиальное — получение какого-либо из возможных результатов {О, Р}, то есть все множество элементарных событий.

Если монета честная, то зададим такую вероятность: P(О) = 50 %, P(Р) = 50 %. Кроме того, P(∅) = 0,P(О, Р) = 100 %. Очевидно, что свойство сигма-аддитивности (которая в данном случае сводится к аддитивности) выполняется. Именно поэтому у нас получилось вероятностное пространство.

Дискретным случайным величинам соответствуют конечные или счетные множества, в них естественной (считающей) мерой оказывается обыкновенный подсчет количества элементов. Соответственно, вероятность в дискретном вероятностном пространстве получают с помощью комбинаторного подсчета вариантов, знакомого каждому студенту или интересующемуся математикой школьнику. Для непрерывных случайных величин вероятность как мера больше похожа на длину или площадь. Точное определение случайной величины мы дадим в следующей главе, пока же положимся на ее интуитивное понимание как величины, которую можно измерить или наблюдать. Но повторные измерения могут привести к иным результатам, заранее не известным.

Для полноценной работы со случайными событиями и вероятностями вводится одно важнейшее понятие, которое нехарактерно для других мер: независимость событий. С ней и связанной с нею условной вероятностью мы познакомимся в главе 4 и разберемся, что же имеет в виду байесовский спам-фильтр. Впрочем, если читателю уже приходилось решать задачи, в которых появляются независимые события (например, выпадение двух «орлов» при двух подбрасываниях монеты), то он знает, что вероятность пересечения для независимых событий вычисляется как произведение их вероятностей.

Если заменить в обсуждаемых определениях и свойствах вероятности сумму на «максимум», а произведение на «минимум», можно построить альтернативную теорию. Она называется теорией возможностей. Это характерный подход для математики в целом. Начинаем с абстрактных рассуждений: числа образуют определенную структуру с операциями сложения и умножения; замечаем, что на ограниченном числовом интервале можно построить такую же числовую структуру, но с другими операциями: минимум и максимум. Строим понятие меры на новой структуре и выясняем, что она открывает новый взгляд на мир! В отличие от теории вероятностей, здесь можно построить две согласованные меры — возможность и необходимость. Это направление, созданное американцем азербайджанского происхождения Лотфи Заде, служит основанием для нечеткой логики и используется в системах автоматического распознавания образов и принятия решений.

Скачать книгу "Вероятности и неприятности. Математика повседневной жизни" бесплатно

100
10
Оцени книгу:
0 0
Комментарии
Минимальная длина комментария - 7 знаков.
Комментариев еще нет. Вы можете стать первым!
КнигоДром » Научно-популярная литература » Вероятности и неприятности. Математика повседневной жизни
Внимание